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Abstract: 

This paper details efforts to program a basic, Jacobi iterative matrix equation solver on a 
reconfigurable field-programmable-gate-array- (FPGA) based computer manufactured by Star Bridge 
Systems, Inc.  An FPGA is an array of Silicon gates on a computer chip that can be reconfigured by 
programmers in the field for specific problems.  In addition to the dynamic nature of FPGA hardware 
(which enables optimization to specific applications), FPGAs are also inherently parallel.  This enables 
programmers to make as many operations run concurrently as they can physically fit on the FPGA, using 
its resources more efficiently than is possible on a CPU.  Jacobi iteration, a relatively simple matrix 
equation solution algorithm, is well suited for implementation on an FPGA computer because of its 
inherent parallel nature and repetitive use of the same arithmetic operations.  A Jacobi iterative matrix 
solver was created and tested successfully on a 3x3 matrix.  The basic components were developed for a 
more parallel implementation of the solver, planned to be a useful tool for future engineering 
applications. 
 
 

1.  Introduction: 
Solving systems of simultaneous linear equations is a 
common task for engineers to perform when modeling 
natural phenomena.  Frequently, applications 
containing thousands or even millions of equations and 
variables require computer solutions because they are 
too complicated to be solved by hand.  Current state-of-
the-art matrix equation solvers for supercomputers 
utilize parallel processing (performing numerous steps 
in an algorithm simultaneously) to increase solution 
speed.  To achieve this parallelism, they exploit 
multiple CPUs capable of communicating with each 
other.  However, this type of parallelism is inefficient, 
using only a small fraction of CPU resources at any 
given time, while the rest of the silicon lies idle and 
wastes power.  CPUs are designed to be general and 
capable of performing any function they will ever need 
to perform.  Therefore, they contain many resources 
that are rarely used. In addition, the interprocessor 
communication time required by traditional matrix 
equation solvers seriously limits the number of 
processors that may operate efficiently in parallel 
(Reference [2]). 

Field-programmable gate arrays (FPGAs), are a 
relatively new type of computer chip with various 
properties that set them apart from more traditional 
CPUs.  They are basically large arrays of binary logical 
gates that can be programmed and connected to each 
other in any configuration.  These gates can be 
configured and reconfigured an arbitrary number of 
times, allowing the creation of customized processors 
specifically programmed for an application.  

Programmed FPGAs save chip space because they are 
specific rather than general.  FPGAs and also allow a 
great deal of inherent parallelism  (Reference [3]).  The 
number of processors that can exist and operate 
concurrently on one FPGA chip is limited only by the 
number of computational logic blocks (CLBs), or 
groups of gates, that exist on that FPGA to be 
programmed.  This allows FPGAs to be significantly 
more efficient than CPUs in their use of processor 
space.  However, the efficiency derived from 
optimizing hardware to a task is only useful if users 
have access to the hardware.  Star Bridge’s Viva® 
software performs all the gate optimization and 
simplifies programming algorithms on FPGAs 
(Reference [3]). 
 
1.1 Viva®: 
Viva® erases the traditional line between hardware and 
software, merging both into what is called Gateware®.  
Viva® is actually software that runs on a traditional 
CPU, allowing users to program algorithms using a 
click-and-drag graphical user interface.  The user 
creates a graphical program called a “sheet” with his 
mouse, then directs Viva® to “synthesize” the sheet.  
This synthesis is more than compiling the program into 
executable machine code; Viva® creates routing 
instructions for reconfiguring the FPGA hardware into 
an optimized, inherently parallel, application-specific 
chip ready to run the Viva® program.  Viva® is a high-
level graphical language that gives chip designing 
capabilities to users who lack the previously required 
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time or expertise to create their own application-
specific integrated circuits (ASICs) (Reference [3]). 
 Viva®’s graphical user interface provides inherent 
parallelism and gives programs the look of flow charts.  
By clicking, dragging, and dropping library objects 
located in the right sidebar of the graphical user 
interface, the user can create input horns, output horns, 
functions with their own inputs and outputs, and pipes 
that carry data to and from all of these objects.  
Functions are represented as rectangular boxes with 
plug-in points located on the left and right for inputs 
and outputs, respectively.  When sheets begin to get 
complicated, users can collapse any group of inputs, 
outputs, and functions into one of these small function 
boxes, enabling both easy creation of specialized 
libraries and easy management of screen clutter.  Figure 
1 is a screen shot of the Viva® 2.0 interface, which 
calculates the dot product 
(x1*y1)+(x2*y2)+(x3*y3)+(x4*y4).  The “Go” input 
begins this vector computation. 
 
1.2 Inherent Parallelism: 
The four multiplications in Figure 1 are automatically 
concurrent, as are the first two additions, due to 
Viva®’s inherent parallelism.  If the FPGA performed 
all the operations one by one, program execution would 
require about 103 clock cycles; by contrast, the parallel 
Viva® solution requires only about 27. 

Dot products and any other operations that exhibit a 
high degree of natural parallelism can reap great 
benefits from this parallel nature of FPGAs and Viva®.  
Parallelism on FPGAs is limited only by two factors.  
The first is the number of operators that can fit on the 
available silicon.  The other is the amount of 
parallelism in the process being programmed.  In nearly 
all algorithms, some processes cannot operate 
simultaneously, due to one process’s dependence on 
another process’s results. These processes require 
separate sequential steps no matter how much silicon is 
available.  Necessary sequentialism, however, is more 
prevalent in some algorithms than others.   

Therefore, the best candidates for programming on 
FPGAs are those with minimal necessary 
sequentialism.  For very parallel algorithms, most of the 
silicon may operate in parallel nearly all the time. 
Jacobi iteration, a solution method for systems of 
matrix equations, is one such algorithm.  
 
1.3 Jacobi Iteration: 
Jacobi Iteration (Reference [1]) is a mathematically 
simple iterative method to solve systems of 
simultaneous linear equations.  Let us begin with the 
matrix equation 
 
[A]{x} = {b}             (1) 
 

that represents the system of linear equations 
 
A11x1 + A12x2 + A13x3 + … + A1nxn = b1 
A21x1 + A22x2 + A23x3 + … + A2nxn = b2 
A31x1 + A32x2 + A33x3 + … + A3nxn = b3 
… 
An1x1 + An2x2 + An3x3 + … + Annxn = bn      (2) 
 
where the A’s with subscripts are matrix coefficients, 
b’s are the right-hand-side values, x’s are the solution 
values, and n is the number of equations in the problem.  
First, each equation is solved for a different variable: 
 

x1 = (b1 - A12x2 - A13x3 - … - A1nxn) /A11 

x2 = (b2 - A21x1 - A23x3 - … - A2nxn) /A22 

x3 = (b3 - A31x1 - A32x2 - … - A3nxn) /A33 

…                         (3) 
xn = (bn - An1x1 - An2x2 - … - An(n-1)xn-1) /Ann  
 
Next, an initial guess is chosen for the solution vector, 
for example {x}(0) = {0}.  A second guess, {x}(1), is 
generated by substituting the values of {x}(0) into the 
right side of equations (3) and evaluating x1

(1) through 
xn

(1).  The new solution vector {x}(1) solved for in this 
manner is then substituted again into the right side of 
equations (3) to generate a third guess, {x}(2).  In 
general: 
 

x1
(k+1) = (b1 - A12x2

(k) - A13x3
(k) - … - A1nxn

(k)) /A11 

x2
(k+1) = (b2 - A21x1

(k) - A23x3
(k) - … - A2nxn

(k)) /A22 

x3
(k+1) = (b3 - A31x1

(k) - A32x2
(k) - … - A3nxn

(k)) /A33 

… 
xn

(k+1) = (bn - An1x1
(k) - An2x2

(k) - … - An(n-1)xn-1
(k)) /Ann 

                       (4) 
 
Under the right conditions, applying (4) repetitively 
yields a sequence of solutions that converges to the 
correct solution vector (Reference [1]). 
 This algorithm is very well suited to the unique 
advantages offered by FPGAs as it exhibits a great deal 
of inherent parallelism.  Each iteration requires n2-n 
multiplications that could ideally all be executed 
simultaneously.  Practically, there are limits to how 
many operations can physically fit on an FPGA chip, 
which prevent such a staggering degree of parallelism 
from being realized.  However, multiplications can take 
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full advantage of all the parallelism the FPGAs have to 
offer.  There are also n2-n subtractions per iteration (not 
quite as inherently parallel as the multiplications) that 
like the multiplications are sufficiently parallel to fully 
exploit all the FPGA has to offer. 
 The Jacobi algorithm was also selected for its 
mathematical simplicity.  Jacobi iteration has only one 
mathematical stage, which it repeats forever, 
distinguishing it from more complex direct matrix 
solvers, which typically have several stages, each 
requiring different mathematical operations (Reference 
[2]).  The iterative method can also be programmed in a 
manner that minimizes the communication between 
different operations.  In fact, we can treat the set of 
operations to evaluate the right side of each equation as 
a separate entity that only requires communication with 
the solution vector on two occasions.  The equation 
sends a signal that says “I computed xi and this is its 
value,” and receives a signal that says “Begin the next 
iteration with the values {x}(k).”  This implementation 
of the Jacobi solver also fully exploits a matrix’s 
sparseness by only storing and operating on the nonzero 
elements of the matrix, as will be explained in the next 
section.  All these reasons, taken together, make Jacobi 
iteration an excellent candidate for programming on an 
FPGA. 

 
 
2. Solver Implementation: 
The goal of this work was to create an iterative matrix 
equation solver to exploit the inherent parallelism of the 
FPGA hardware to as high a degree as possible.  This 
section describes the programs that were written toward 
that end. 
 
2.1 Vector Representation in RAM: 
The matrix [A] is not stored all together as one entity, 
but rather as n independent vectors, each vector storing 
data for one row and referenced only by the process that 
created it.  All of the computations this solver performs 
are vector operations on rows of the matrix and 
approximations to the solution vector.  Though it might 
appear convenient to pass vectors around between 
functions the same way bits and numbers are passed, 
such an approach is not feasible for vectors that contain 
thousands or millions of numbers.  Instead, a vector 
representation scheme that treats vectors as memory 
objects rather than data flowing through a pipe is 
necessary.  For this reason, vectors in this Jacobi 
iterative solver are stored in RAM, and treated as 
objects into and out of which data must be passed one 
number at a time.  It takes one FPGA clock cycle to 
store or retrieve data in RAM. 
 There are two types of vectors used in this project, 
“dense” and “sparse.”  The first type, dense, is a 

representation designed for vectors whose terms are all 
or nearly all nonzero.  Approximations to the solution 
vector (hereafter referred to simply as solution vectors) 
are represented as dense vectors.  A dense vector is 
stored as an array of numbers indexed by their address 
in the RAM 

By contrast, rows of a matrix may contain only a 
small percentage of nonzero elements and therefore are 
represented and stored as sparse vectors.  A sparse 
vector is an ordered array containing each nonzero 
element that occurs in the vector, paired with that 
element’s location in the array.  By storing sparse 
vectors in this way, the solver can ignore any zero 
element of a matrix, allowing full exploitation of the 
matrix’s sparseness. 

The number of nonzero elements (called the “size” 
of the vector) is also stored in a register associated with 
one sparse or dense vector’s RAM. 
 Figure 2 shows a dense vector and a sparse vector, 
programmed in graphical Viva® code.  The parameters 
passed into the dense RAM object are “Data,” “i” 
(index), “Go” (initiates a read or a write), “Read” and 
“Write” (true/false bits which tell the RAM how to 
interpret a “Go” signal), “Size” (the input to the size-
storing register), and “Resize” (updates the size-storing 
register).  The parameters passed out are “Data,” 
“Size,” and “Done” (indicates a read or a write is 
complete).   “ClkG” is the global clock. 

The sparse RAM object has mostly nearly identical 
inputs and outputs, except that the location of data in 
the mathematical vector is not necessarily the same as 
its location in the memory.  “i” still represents the 
mathematical location of data, but now “Addr” 
represents the memory location where data is stored. 
 In addition, vectors’ input and output parameters, 
for the sake of easier programming and less cluttered 
sheets, are “packed” into one pipe and passed together.  
This feature does not actually alter the functionality of 
any program or function and is not necessary – it is 
merely a mechanism for packaging seven or eight 
distinct pieces of information into one graphical pipe 
rather than in seven or eight pipes. 
 Because the RAM vector representation is not like 
other data in Viva®, which can be passed intact through 
pipes, into and out of boxes, functions that operate on 
vectors must be implemented differently than those that 
operate on more conventional data.  In many cases, 
vector functions require for loops and other control 
structures to cycle through the vector.  In addition, 
these functions may not only require input from the 
vectors on which they operate, but also provide output 
parameters back to those vectors, in order to tell the 
vectors which data to send and when.  It is easiest to 
place the vector object inside a function that uses it, but 
often it is necessary to keep vectors outside of 
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functions, especially if more than one function uses 
them. 
 Typically more than one function operates on a 
vector during the execution of a program (e.g. one 
function loads the vector, and another dots it with 
another vector).  Both functions must be able to send 
the vector a set of input parameters, but the vector must 
only respond to the correct set of parameters for the 
specific stage of execution that is underway.  The best 
way to achieve this goal is to pass both sets of 
parameters into a Viva® Multiplexer object 
(abbreviated “Mux” in Viva®).  The Mux also requires 
a “state input” that signals to the Mux which stage of 
execution is currently underway, and therefore which 
set of parameters applies and should be passed on to the 
vector.  This state input can be a bit, double bit, triple 
bit, or any other data type, depending on how many 
different stages it must distinguish among.   

Combining a Mux and a vector into one object was 
used to form five-input and six-input vectors, with two 
and three different sets of parameters to choose from, 
respectively.  This maintains the same functionality but 
saves space on complex sheets.  Figure 3 contains one 
such five-input vector.  The “Loader_S” object sends 
one set of parameters to the sparse vector, to the input 
point on Sparse labeled “S_I_0” (sparse input zero).  
The “Reader_S” object sends another set to the “S_I_1” 
(sparse input one) input point.  “Load/Read,” the input 
which leads into the “S” input point, contains the state 
bit, selecting which set of parameters to use.  When 
“Load/Read” is 0, the vector uses the “S_I_0” or 
loading parameters, and when “Load/Read” is 1, the 
vector uses the “S_I_1” or reading parameters. 
 
2.2 Dot Product Operation: 
The only mathematical operation required during the 
iterative stage of execution is a modified dot product 
between a sparse matrix row and a dense solution 
vector.  Equations (3) look very much like dot 
products, but are not exactly dot products.  Consider the 
similarities and differences between 
 
xi

(k+1) = (bi - Ai1x1
(k) - Ai2x2

(k) - …       (5) 
- Ai(i-1)x(i-1)

(k) - Ai(i+1)x(i+1)
(k) - … - Ainxn

(k)) /Aii  
 
and the simpler dot product, 
 
xi

(k+1) = <Ai, xi
(k)>           (6) 

 
where Ai is the ith row of A. 
The first difference is that all the elements of the row in 
(5) must be negated and then divided by the diagonal 
element of the row, Aii.  Second, the diagonal element 
term Aiixi

(k) is included in the dot product (6) but not 

in (5).  Third, the right hand side bi, divided by Aii, 
must be added into the result in (5).  The dot product 
operation implemented in the iterative solver must be 
modified to account for these differences in procedure.  
Though the operation in (5) is not exactly a dot 
product, it will hereafter sometimes be referred to as a 
dot product or modified dot product as there is no other 
term that could describe it. 
 To divide all the elements of Ai by Aii and negate 
them during each iteration is quite wasteful.  To divide 
and negate at the very beginning, before the first 
iteration, saves time and resources.  The data generated 
by this process will be much more efficient to use than 
the raw matrix data. 
 To complete the data stored for the equation, bi/Aii 
is stored in place of the diagonal element, indexed as 
the diagonal element would be.  The “dot product” 
function is programmed to recognize when the index of 
the sparse vector has reached i.  When it has, the 
function skips the multiplication step and simply adds 
the data from the sparse vector into the accumulated dot 
product. 
 
2.3 Intuitive Description of Iterative Solver: 
The matrix equation solver consists of one 
communication and control “hub” and numerous dot 
product “factories” that perform mathematical 
computations and communicate only with the hub.   

The first of the hub’s two functions is 
communication.  The hub stores the current 
approximation to the solution vector, receives updates 
on this approximation from each dot product factory 
during iterations, and broadcasts copies of itself to 
every factory between iterations.  The second function 
is synchronization.  The hub keeps track of which 
equations have reported solution vector updates during 
the current iteration.  When all equations have reported, 
and the “Dot Product” stage of execution is complete 
for one iteration, the hub sends the factories a signal to 
proceed to the “Copy” stage of execution.  When 
copying is finished, the hub sends another signal to the 
factories, initiating another “Dot Product” stage. 

The factories perform the actual mathematical 
operations that solve the system of equations.  Each 
factory contains sparse row data vectors, copies of the 
dense solution vector, adds, and multiplies.  During the 
“Dot Product” stage, the factory computes the modified 
dot products on all of this data with a user-defined 
degree of parallelism, and reports the results back to the 
hub until it is finished with all its rows.  Each factory 
then waits for the other factories to finish their own 
computations.  During the “Copy” stage, each factory 
receives the new solution vector, one value at a time.  
Signals from the hub tell each factory when to begin 
and end each stage. 
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2.4 Parallelization of Solver: 
To use FPGA computers to their full potential, the 
programmer must endeavor to take the best possible 
advantage of the inherently parallel nature of the 
FPGA.  In the case of this iterative solver, both the 
algorithm and the FPGA have a great deal of potential 
parallelism, and exploiting this parallelism to the 
maximum is essential to achieving high solution speed. 
 Since the number of CLBs on the FPGA (and 
therefore the number of specialized processors that can 
be created) limit parallelism, the best results are 
achieved when most of the processors can operate 
simultaneously.  For large problems, complete 
parallelization is impossible, but a good combination of 
sequentialism and parallelism can use most of the 
FPGA’s resources most of the time.  Minimizing chip 
space and operation time governs many decisions 
regarding how to structure Viva® programs.   

Often, it is advantageous to let several different 
processes share the same adder or multiplier.  
Unfortunately, such optimization can complicate 
matters, requiring complex timing and routing 
structures to tell the adder or multiplier where to obtain 
inputs and where to send outputs at any given time.  
These control structures are explained in more detail in 
section 2.5. 

The first level of parallelism applied to the matrix 
equation solver program was obtained by separating 
different rows’ operations from one another. 
Computations for row 4 have nothing to do with 
computations for row 1, so the two sets of computations 
are inherently parallel.  If we had enough FPGA space, 
we could simply create a factory for each row, but 
given current technology it is only feasible to have a 
limited number of factories, and assign each factory to 
perform the computations for numerous rows, one row 
at a time.  This was the only level of parallelism 
programmed into Figure 4, the 3x3 solver that was 
tested successfully.  Each factory includes one 
multiplier and one adder to utilize for dot product 
computation.  Further analysis, however, shows that 
dramatically increased parallelism is possible by adding 
a second level of parallelism. 

Some Viva® objects are much larger than others; 
On the Xilinx 4062, the FPGA used for this solver, 32-
bit-floating-point adders are quite large (14% of the 
CLBs on one of the FPGAs), 32-bit-floating-point 
multipliers are smaller (7%), and most other operations 
necessary to the solver are very small (<1%).  The 
CLBs necessary to access different RAM addresses can 
also grow to a significant size, given larger-sized or 
denser matrices.  (Given the small nature of the 
matrices tested on this solver, RAM did not take up a 
significant amount of FPGA space.  However, when the 

solver is tested on a larger scale, RAM accessing may 
become a consideration). 
  There also are differences in the amount of time a 
given operation on an FPGA takes to complete.  Many 
operations, such as bit inversion, logical gates, and 
Muxes are asynchronous (effectively “instantaneous;” 
they require much less than one clock cycle), and some 
control or memory processes such as accessing or 
storing RAM are synchronous, with one nominal clock 
cycle.  An addition requires only one cycle, while a 
multiplication requires around 25. 
 Programming strategies must take these differences 
into account.  Each iteration requires about as many 
multiplications as it does additions, but since a 
multiplication takes much longer than an addition, and 
adders take up more space on the chip than multipliers, 
it makes sense to create more multipliers than adders in 
execution of the algorithm.  One adder can effectively 
service almost 25 times as many dot product processes 
simultaneously as can one multiplier.  For this reason, 
the number of multipliers is the determining factor for 
the actual degree of parallelization in the solver, and it 
is advantageous to create extra multipliers that share 
fewer adders.  The following parallelization scheme for 
factories, though not completely implemented and 
tested in a working matrix equation solver, was 
programmed.  This scheme, when implemented, will 
greatly increase solution speed by increasing the 
number of multipliers that operate concurrently. 
 
2.4.1 NRows and NRows1*: 
An object, called “NRows,” stores N sparse vectors of 
row data, and what may be thought of as a “pointer.”  
These vectors are accessed one at a time.  Inputs into 
NRows are only received by the row that the pointer 
points to, and outputs from NRows also come from this 
row.  When the “First_Row” input initializes NRows, 
the pointer points to the first row.  When the program 
finishes with each row vector, another input, 
“Next_Row” advances the pointer.  When the pointer 
reaches the end of the list, it ceases pointing to any of 
the rows. 

Another object, called “NRows1*,” consists of an 
NRows object, one multiply object (the asterisk 
represents multiplication), and a few other functions, 
including a copy of the solution vector.  This object 
evaluates the (modified) dot product for one row at a 
time.  NRows1* contains both the control structures for 
the dot product and the multiplier necessary to compute 
it.  The control structure selects each nonzero element 
in the row data one by one, matches it with the 
appropriate coefficient in the solution vector, and sends 
it to the multiplier to be multiplied.  The result of the 
multiplication is then sent to the adder along with the 
current accumulated dot product.  Most of these 
components can be seen in Figure 5, the graphical code 
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for NRows1*.  The rest are included in the Rowdot 
function, expanded and displayed Figure 6. 

The adder, however, is not included in an NRows1* 
object.  This is because one adder is shared among 
several NRows1* objects.  Therefore, the adder must 
remain an outside resource for NRows1* to access only 
when required, and when another NRows1* object is 
not using it simultaneously. 
 
2.4.2 M(NRows1*) and M(NRows1*)1+: 
The M(NRows1*) object contains a group of M 
NRows1* objects, which work simultaneously, sharing 
an adder.  The M(NRows1*)1+ object consists of an 
M(NRows1*) object and one “TDM_Add” object.  
TDM_Add is an addition object that both performs 
addition and mediates between the multipliers 
requesting the adder’s resources.  TDM_Add is 
explained more completely in section 2.5. 
 
2.4.3 Recursion for Flexibility: 
One important feature of an FPGA program is the 
user’s freedom to choose the parameters that will affect 
its operation.  In this solver, a number of parameters are 
passed out to the top level to give the user options 
concerning parallelism, including two in particular: 
(MSB)M, and (MSB)N, which define respectively the 
number of multipliers sharing each adder, and the 
number of rows sharing each multiplier.  The value 
obtained from each of these variables is the bit length of 
its type, not the actual data it holds.  They must be 
defined before compile time because they affect the 
actual creation of the factory part of the iterator on the 
chip.  The way this recursion works (which is the clever 
standard mode of recursion in Viva® developed by 
Samuel Brown), is that a function is created with 
different definitions according to the data types of its 
input.  The end leaf of recursion is the function 
definition where the recursion input is a bit, and the 
programmer strips one bit off the data type at each non-
end-leaf level of recursion.  In this way, the number of 
bits in the recursion input is the number of recursion 
levels.  $M(NRows1*) (the lower-level function inside 
M(NRows1*) that actually implements the recursion) 
uses this recursion method and is shown in Figure 7.  
(MSB)M is the recursion variable. 
 
2.5 Control Structures: 
Since Viva® programming is inherently parallel, and 
functions do not necessarily progress in any particular 
order, the Viva® programmer must make use of Viva® 
control structures in order to synchronize operation.  In 
other words, all operations automatically execute in 
parallel; any sequential operation must be explicitly 
programmed and defined precisely.  Since most 
algorithms require a combination of sequential and 
parallel operations, and since the best Viva® programs 

reuse many of their operators, control structures often 
are more complex than a simple one-by-one 
progression from function to function.  These control 
structures afford users great power in defining how 
programs work, and thus can achieve large speedups 
from parallelism.  However, they can become complex 
and more difficult than any other parts of programs. 
 The most basic control structure available in Viva® 
is Go-Done circuitry.  Synchronous objects read in their 
input and begin operation as soon as they receive a Go 
“pulse” (a bit which goes to one for a single clock 
cycle, then returns to zero).  When finished with 
operation, they output a Done pulse to indicate the fact. 
 For loops are another easy-to-use control structure 
built into the Viva® language, and are similar to for 
loops in text based languages in their purposes, though 
their functionality is adapted to the different type of 
programming; they are objects, with input pulses and 
output pulses.  Inputs include Next (indicates to For 
object that an iteration is complete) and Go (initiates 
first iteration), while outputs include i (the looping 
index), Pulse (sets in motion the next iteration after a 
Next is received), and Done (indicates all iterations are 
complete). 
 Other control structures needed to be more complex.  
Programming of control structures turned out to be the 
single most challenging part of creating the iterator.  It 
would take up too much space to explain the workings 
of every control machine created for the iterator, but 
brief outlines of what the more important structures do 
are necessary in an explanation of the overall program, 
and therefore are provided. 
 The previously discussed hub, a function called 
Update/Copy, is the control structure which drives the 
highest level of timing, the alternation between copy 
and dot product stages.  In the copy stage, the current 
solution vector guess, stored in the hub, is broadcast to 
all the factories, along with a signal letting the factories 
know what stage is currently “on.”  During the dot 
product stage, the hub signals the factories to begin 
computation, awaits reports from each row that a dot 
product has been completed, and keeps track of which 
rows have and have not reported.  A string of bits as 
long as the number of rows is required to keep track of 
this; as a row reports, its associated bit goes from zero 
to one.  When the bit string is full of all ones, the dot 
product stage is ended. 
 Recursive structures that are accessed one by one 
also require recursive control structures that maintain a 
“pointer” to whichever level of recursion is currently 
being accessed.  This functionality usually consists 
mostly of a register that stores one bit on each level of 
recursion, signaling if each level is “on” or “off.”  
Beginning with the bottom level, as each level of 
recursion is used, that level is turned off.  In the 
meantime, signals are passed down through the “on” 
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levels until they come to a level under which is an “off” 
level.  In this way, only the bottommost “on” level 
receives and sends data, while the others are bypassed.  
In Figure 7, the variable “Pass2Me” is the level’s on/off 
switch. 
 Yet another important control necessity arises from 
shared adders and a shared hub.  Though multipliers are 
shared, it is not difficult to control their use, as only one 
row will ever use that multiplier at any one time.  
Adders, on the other hand, may receive several different 
sets of data from several different multipliers 
simultaneously.  Since an adder can only perform one 
addition at a time, control structures must be present to 
store the other sets of data while the adder adds one set, 
and to send another waiting step as soon as the adder is 
finished.  The TDM_Add (TDM stands for Time 
Division Multiplexing) object performs both of these 
functions, containing control structures and an adder to 
handle simultaneous input from numerous different 
multipliers.  The Hold object performs these same 
functions, except for the fact that instead of managing 
several multipliers sharing one adder, it manages 
several factories, all with inputs to one hub. 
 
2.6 Input: 
Before iteration actually starts, there are some 
operations that must be done to prepare the raw matrix 
data – see the explanation of the algorithm in section 
1.3 for a description of these initial data processing 
operations.  For the purpose of not wasting FPGA space 
on functions that are only performed once, at the 
beginning of execution, these preparatory steps are left 
outside of the iterative solver.  When file input is 
implemented, a program to perform these preparatory 
steps should be created for the CPU, to get the data into 
the form it must take for the FPGA solver. 

Inputs were sometimes read from the screen to test 
component functions and the 3x3 iterator, which did not 
require a large volume of input.  However, for larger 
matrices, screen input would certainly be far too tedious 
and lengthy, and automatically loaded file input would 
be preferred.  Automatic loading procedures were 
developed for input that was defined in the actual code, 
but as the solver is still at a level of small test cases, it 
has not yet been necessary to create file input 
procedures.  Such procedures should be somewhat 
complicated to create, but not prohibitively complicated 
since Viva® does contain viable File input/output 
procedures.  Future extensions of this solver will 
undoubtedly require automated file loading procedures. 

Such automatic loading procedures are complicated 
by the fact that the Viva® objects that reference the 
RAM are removed by several steps from the top level.  
File data input into a factory must be routed to the 
correct M(NRows1*)1+ object.  Once passed into that 
M(NRows1*), it must be routed to the correct 

NRows1* object, where it must then be routed to the 
correct Row in NRows.  Each of these routing steps 
requires a large number of registers, Muxes, Demuxes, 
and other cooperative control structures to keep track of 
where every piece of incoming data should be stored.  
The file input all enters the program at the same place, 
and rather than directly sending it to somewhere in the 
program to be stored, the program itself must simply go 
through all its rows one by one in an orderly fashion, 
opening and then closing each to incoming data.  A 
different scheme for loading, storing and accessing data 
might be advantageous in future versions of the 
equation solver if it allowed for more simplicity of data 
loading and accessing. 
 With an automatically loading iterator, the user will 
need to make several inputs before compiling, including 
(MSB)M and (MSB)N.  Other variables that must be 
defined at compile time are DType (data type), which 
tells Viva® what type of specialized multipliers, 
adders, registers, and other functions to build for data 
processing; iType (index type), which tells Viva® what 
type (must be an MSB type) to use to represent indices 
and row numbers; and NBits, the bit length of which 
must be at least the total number of rows in the matrix.  
Some constants, such as the size of the matrix, also 
must be defined either before or after compilation.  
Finally, the user must choose the number of factories, 
and each factory individually created and connected.  
This is a weakness that should be redressed in future 
matrix equation solvers. 
 An ideally user-friendly solver should only take a 
few inputs defining the amount of parallelism, a file 
name containing data, and a single signal to set the 
iterations in motion. 
 
 
3. Results: 
At this stage, the iterative solver has had successful 
initial results.  A 3x3 application of the iterator has 
been tested successfully.  Large versions with hundreds 
or thousands of equations and variables are at this point 
not possible, due to limitations of current hardware and 
code and incomplete loading procedures. 
 
3.1 Small-Scale Success: 
The aforementioned test of the solver on the following 
3x3 matrix equation: 
 _                         _     _    _ 
| 1.0  0.5  0.25   |    | 2.75 | 
| 0.5     1.0  0.125 | {x}  =   | 2.875 | 
|_ 0.25 0.125 1.0   _|    |_3.5 _| 
 
was successful.  This test correctly found the solution 
x1 = 1, x2 = 2, x3 = 3 to a high degree of precision.   
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A few troublesome idiosyncrasies emerged from the 
results, however.  After converging to within one 
millionth from the exact solution, if the iterator 
continued iterating, it would briefly stray from the 
correct solution, as much as a hundredth off the exact 
answer.  Another finding was that, viewing the results 
after each iteration, during millions of clock cycles per 
second, an occasional aberration would appear that was 
far away from the correct answer, (e.g. 4.7*1037).  It is 
unknown what caused these errors, but round-off error 
is not likely to be the culprit; the numbers were stored 
as 32-bit float numbers, so round-off error should be 
very small.  Small errors do not have a chance to 
compound in an iterative method as they do in direct 
methods, because though error might offset the current 
guess at the solution vector by a small amount, the 
vector automatically converges back toward the correct 
answer, nullifying the error.  Therefore, it is more likely 
that something sporadically goes awry within a 
multiplier or adder, or that a small error in the solver’s 
programmed control structures manifests itself 
infrequently. 
 
3.2 Large-Scale Limitations: 
Numerous factors have frustrated attempts to create the 
more parallel matrix equation solver described in 
section 2.4.1-2.4.3.  First and foremost have been 
difficulties using Viva® adders and multipliers for 
floating-point data types.  For unknown reasons, some 
functions programmed and tested successfully on the 
“byte” data type failed when applied to the “float” data 
type.  Examples of errors from adders and multipliers 
usually took the form of errors such as 
1.0+2.0=4.7*1037, which suggest misplacement of bits 
resulting from multipliers and adders being confused 
about whether they are operating on unsigned integers 
or floating-point numbers.  In some cases, programmer 
error was the cause of these problems, in the form of 
misapplication of data type casting rules and procedures 
in Viva®.  These rules can be complex and were 
sometimes confusing to the programmer.  For instance, 
data in feedback loops must be recast before being fed 
back into the functions, and data read in from files must 
be cast to its own data type before being used.  Data 
type management is simply another example of a tool 
Viva® programmers possess which increases their 
power, but can also confuse. 

In other cases, however, casting rules such as the 
ones above seemed to have been followed but 
nonsensical results still came out of floating-point 
adders and multipliers.  Such bugs limited the speed of 
developing functions and ultimately were the main 
obstacle that prevented a solver using the complex 
recursion scheme outlined in this paper from ever being 
successfully tested. 

 Another limitation that affected the successfully 
tested but not-as-parallel solver was the number of bits 
that could be passed between FPGAs, currently 32 bits.  
The implementation of this iterative solver requires 37 
bits of communication.  The upshot was that only one 
FPGA could be used.  However, Star Bridge’s latest 
FPGA Hypercomputer® allows 128 bits to be passed 
between FPGAs. This newer hypercomputer® includes 
new Xilinx FPGAs with more space (6 million gates) 
on each FPGA and faster (on-chip) floating-point 
multiplications. 
 In the end, most of the necessary functions, such as 
NRows through M(NRows1*)1+, have been 
programmed and tested successfully for integer data.  
Automated file input, fewer user inputs, and a few 
small functions to connect things on the top level still 
have yet to be programmed and are planned for the 
future to make the solver complete. 
 
4. Conclusions: 
FPGA technology, paired with Viva®, shows serious 
promise for application to matrix equation solution.  
Solving matrix equations was found to be both possible 
and feasible given current FPGA technology, and if the 
current rate of FPGA and Viva® advancement 
continues, it is very likely that FPGAs will achieve 
parallelism unequalled in current state-of-the-art CPU-
based computers.  This parallelism should yield much 
faster solutions for iterative matrix equation solvers and 
other applications that can exploit parallelism. 
 
 
5. Acknowledgements: 
First and foremost, I would like to thank Dr. Olaf O. 
Storaasli, who has volunteered so much of his time in 
the past two years to open up wonderful opportunities 
for me.  I also would like to thank him for helping to 
edit this report.  I would also like to acknowledge Dr. 
Robert Singleterry and Samuel Brown for teaching me 
a great deal about the Viva® language, explaining 
various concepts to me, providing me with ideas, and 
helping me to debug code.  In particular, many of the 
recursion and time-division multiplexing ideas used in 
the solver are inspired by the clever ways Samuel 
Brown has solved other problems.  Finally, I would like 
to thank NASA Langley Research Center and Star 
Bridge Systems for making this work possible. 
 
 
6. References: 
1. Golub, Gene H. and Charles F. Van Loan.  1989.  

Matrix Computations, second ed.  The Johns 
Hopkins University Press, Baltimore. 

2. Singleterry, Robert C., Jaroslaw Sobieszczanski-
Sobieski, and Samuel Brown.  “Field-
Programmable Gate Array Computer in Structural 



 8

Analysis: An Initial Exploration.”  43rd American 
Institute of Aeronautics and Astronautics (AIAA) 
Structures, Structural Dynamics, and Materials 
Conference.  April 22-25, 2002. 

3. Star Bridge Systems, Inc.  2002.  Star Bridge 
Systems Web Site.  
<http://www.starbridgesystems.com> 



 9

 
 
 
 

Above, Figure 1: Screen shot of Viva® program to compute                       
                            (x1*y1)+(x2*y2)+(x3*y3)+(x4*y4). 
Below, Figure 2: Code for Dense RAM vector and Sparse RAM Vector.   
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Above, Figure 3: Example of five-input Sparse 
Below, Figure 4: Complete 3x3 iterator 
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Above, Figure 5: NRows1* 
Below, Figure 6: Rowdot 
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Above, Figure 7: $M(NRows) 


